计量论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索

[通用量具] 关于JJG34-2008规程附录不确定度评定中的一个疑问

[复制链接]
yxd192 发表于 2013-5-12 15:21:04 | 显示全部楼层 |阅读模式
请问各位,JJG34-2008规程附录不确定度评定中的一个疑问,A8扩展不确定度的表示中为什么是 根号2×k×uc,为什么要乘根号2呢
无标题.png
yzjl3420646 发表于 2013-5-12 21:12:21 | 显示全部楼层
事实上吧~我觉得吧~这个评定是错的。
起码弄个U95=k×uc ....这玩意肯定是错的了
 楼主| yxd192 发表于 2013-5-12 22:33:07 | 显示全部楼层
我个人的感觉也不符合JJF 1059的要求,还有哪位有高见的,请指教呀
规矩湾锦苑 发表于 2013-5-13 01:29:55 | 显示全部楼层
  问题出在不确定度评定的测量模型上。JJG34-2008的6.3.11条规定,“指示表的全量程示值误差由正行程内各受检点误差的最大值与最小值之差确定。”因此,测量模型应该是:
  e=(Ld-Ls)max-(Ld-Ls)min
  显然,(Ld-Ls)max引入的标准不确定度分量就是不确定度评定附录中的uc,(Ld-Ls)min引入的标准不确定度分量同样也是不确定度评定附录中的uc,两者完全相等。测量结果e的合成标准不确定度应是两者的平方和再开方(即√2·uc)。扩展不确定度取包含因子k=2,则U=√2·k·uc=√2×2×2.0=5.7μm。(注:其余略)
  需提醒的是,检定规程中使用了符号U95,下标的95是违反规定的。给出Up就必须同时给出有效自由度,没有计算有效自由度按置信概率查t分布表的0.95,怎么能够确定p一定是0.95呢?按惯例取k=2或3,就不能给出置信概率p,而必须在给出U的同时给出k。
kumar_wxf 发表于 2013-5-15 12:05:01 | 显示全部楼层
楼主提出的问题是正确的,其实根本的问题是数学模型建立有问题,
乘√2是因为评定过程只评了单次读数的标准不确定度,而示值误差是两次读数计算的结果,而不确定度分量的计算大致相同,
规程计算出合成标准不确定度不是真正意义上的Uc,其实应该修改数学模型,把这一步骤放到分量的评定中就不存在这样的问题了
mounblaze 发表于 2013-5-17 14:08:53 | 显示全部楼层
同意4楼版主的意见。
4楼:“需提醒的是,检定规程中使用了符号U95,下标的95是违反规定的。给出Up就必须同时给出有效自由度,没有计算有效自由度按置信概率查t分布表的0.95,怎么能够确定p一定是0.95呢?按惯例取k=2或3,就不能给出置信概率p,而必须在给出U的同时给出k。”非常好,赞一个。这个问题正是规程存在的错误。这是规程主要起草人当时对不确定度知识的了解不足造成的,后来与主要起草人之一交流过,其本人已认识到存在的错误。
规程中附录A中A.2 数学模型指的是指示表各受检点的示值误差,规程中少写了“受检点”几个字,而A.8扩展不确定度 是指全程示值误差的。指示表的全量程示值误差由正行程内各受检点误差的最大值与最小值之差确定。
规矩湾锦苑 发表于 2013-5-18 00:51:56 | 显示全部楼层
回复 6# mounblaze

  “规程中附录A中A.2 数学模型指的是指示表各受检点的示值误差,规程中少写了‘受检点’几个字,而A.8扩展不确定度 是指全程示值误差的。指示表的全量程示值误差由正行程内各受检点误差的最大值与最小值之差确定。”这应该是√2的来源的准确解释,因为误差最大值受检点和最小值受检点的不确定度各为1时,其合成标准不确定度就是1的平方加1的平方再开方,合成标准不确定度必然是√2。所以检定规程的不确定度评定结果是正确的,主要问题是没有交待清楚。
amwusrrgw 发表于 2013-5-20 14:55:24 | 显示全部楼层
回复 7# 规矩湾锦苑


    是的,规程是没错的
飘逸狂想 发表于 2013-5-23 18:25:12 | 显示全部楼层
示值误差一般情况下应该是各受检点的示值误差,符合示值误差定义,即测量仪器示值与对应输入量的参考量值之差[JJF1001-2011]
规矩湾锦苑 发表于 2013-5-24 00:26:25 | 显示全部楼层
回复 9# 飘逸狂想

  是的,你说得对,“示值误差一般情况下应该是各受检点的示值误差,符合示值误差定义”,是被检仪器受检点显示值与计量标准显示值之差。但是指示表的示值误差却并不是这个定义,而是“正行程内各受检点误差的最大值与最小值之差”,因为指示表的示值误差涉及了误差最大和最小两个受检点,所以才造成了其检定结果的合成标准不确定度中的√2。
老是 发表于 2013-5-26 21:10:56 | 显示全部楼层
回复 4# 规矩湾锦苑


    请教老师:“没有计算有效自由度按置信概率查t分布表的0.95,怎么能够确定p一定是0.95呢?按惯例取k=2或3,就不能给出置信概率p”。。。这句我不懂啊。按惯例取k=2或3,置信概率难道不是惯例的0.95和0.9973吗?
规矩湾锦苑 发表于 2013-5-26 22:36:36 | 显示全部楼层
回复 11# 老是

  JJF1059.1-2012的5.2.2条d)款说得明白:对U应给出k值,对Up应给出p和νeff值。
  为什么呢?因为①知道了置信概率p和有效自由度νeff,才能够去查附录B的t分布表,得到包含因子kp,不知道置信概率p和有效自由度νeff中的任何一项均无法查得kp,p、νef、fkp三者只有知道其中两个才能够确认第三者,想知道p,必须同时知道kp和νeff。仅仅告诉我们kp的大小,而并没有告诉νeff的大小,是无法查得kp的。②仅仅按惯例取k=2,并没有告诉我们属于什么分布,可以从JJF1059.1-2012的表2和表3得知,只有在正态分布是k=2,才能确定p=0.95,两点分布时k=1,p就达到100%了,矩形分布k=√3≈1.732时p也达到了100%,梯形分布k=2时,P=100%,也不是95%(即0.95),可见仅仅告诉我们k=2就断定p=0.95是一个不小的错误。所以我在4楼说“检定规程中使用了符号U95,下标的95是违反规定的”,也就是说检定规程在这里犯了一个不小的错误。
深水炸弹 发表于 2013-6-14 08:49:01 | 显示全部楼层
是应为百分表的行程为正反行程,也是这么带入的
象上人儿 发表于 2020-2-22 15:30:36 | 显示全部楼层
规矩湾锦苑 发表于 2013-5-13 01:29
  问题出在不确定度评定的测量模型上。JJG34-2008的6.3.11条规定,“指示表的全量程示值误差由正行程内各 ...

非常感谢!有幸看到您的帖子,受益匪浅。
我还想请教一下,JJG34-2008中附录A.6.3指示表和检定仪线膨胀系数是从哪里得到的?依据在哪里?
规矩湾锦苑 发表于 2020-2-23 01:53:57 | 显示全部楼层
象上人儿 发表于 2020-2-22 15:30
非常感谢!有幸看到您的帖子,受益匪浅。
我还想请教一下,JJG34-2008中附录A.6.3指示表和检定仪线膨胀系 ...

  可以查《机械工程师手册》或《金属材料手册》,大中专院校计量专业教材《计量技术基础》或《几何量计量》中一般也会给出。制造量具的材料一般是轴承钢、工具钢等,它们的线膨胀系数大约是11.5×10^(-6)/℃。形象一点的说法是,1米的长度在环境温度每变化1℃时,材料的长度大约变化0.01mm(10μm)。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|计量论坛 ( 闽ICP备06005787号-1—304所 )
电话:0592-5613810 QQ:473647 微信:gfjlbbs闽公网安备 35020602000072号

GMT+8, 2025-5-4 23:13

Powered by Discuz! X3.4

Copyright © 2001-2023, Tencent Cloud.

快速回复 返回顶部 返回列表