计量论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索

[质量] 如何选用称重传感器

[复制链接]
csxfjsw123 发表于 2007-5-1 16:39:34 | 显示全部楼层 |阅读模式
如何选用称重传感器
  称重传感器被喻为电子衡器的心脏,它的性能在很大程度上决定了电子衡器的准确度和稳定性。在设计电子衡器时,经常要遇到如何选用传感器的问题。
如何选用传感器
称重传感器实际上是一种将质量信号转变为可测量的电信号输出的装置。用传感器首先要考虑传感器所处的实际工作环境,这点对正确选用传感器至关重要,它关系到传感器能否正常工作以及它的安全和使用寿命,乃至整个衡器的可靠性和安全性。
环境给传感器造成的影响主要有以下几个方面:
(1)高温环境对传感器造成涂覆材料熔化、焊点开化、弹性体内应力发生结构变化等问题。对于高温环境下工作的传感器常采用耐高温传感器;另外,必须加有隔热、水冷或气冷等装置。
(2)粉尘、潮湿对传感器造成短路的影响。在此环境条件下应选用密闭性很高的传感器。不同的传感器其密封的方式是不同的,其密闭性存在着很大差异。
常见的密封有密封胶充填或涂覆;橡胶垫机械紧固密封;焊接(氩弧焊、等离子束焊)和抽真空充氮密封。
从密封效果来看,焊接密封为最佳,充填涂覆密封胶为最差。对于室内干净、干燥环境下工作的传感器,可选择涂胶密封的传感器,而对于一些在潮湿、粉尘性较高的环境下工作的传感器,应选择膜片热套密封或膜片焊接密封、抽真空充氮的传感器。
(3)在腐蚀性较高的环境下,如潮湿、酸性对传感器造成弹性体受损或产生短路等影响,应选择外表面进行过喷塑或不锈钢外罩,抗腐蚀性能好且密闭性好的传感器。
(4)电磁场对传感器输出紊乱信号的影响。在此情况下,应对传感器的屏蔽性进行严格检查,看其是否具有良好的抗电磁能力。
(5)易燃、易爆不仅对传感器造成彻底性的损害,而且还给其它设备和人身安全造成很大的威胁。因此,在易燃、易爆环境下工作的传感器对防爆性能提出了更高的要求:在易燃、易爆环境下必须选用防爆传感器,这种传感器的密封外罩不仅要考虑其密闭性,还要考虑到防爆强度,以及电缆线引出头的防水、防潮、防爆性等。
其次对传感器数量和量程的选择。
传感器数量的选择是根据电子衡器的用途、秤体需要支撑的点数(支撑点数应根据使秤体几何重心和实际重心重合的原则而确定)而定。一般来说,秤体有几个支撑点就选用几只传感器,但是对于一些特殊的秤体如电子吊钩秤就只能采用一个传感器,一些机电结合秤就应根据实际情况来确定选用传感器的个数。
传感器量程的选择可依据秤的最大称量值、选用传感器的个数、秤体的自重、可能产生的最大偏载及动载等因素综合评价来确定。一般来说,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。但在实际使用时,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器量程时,要考虑诸多方面的因素,保证传感器的安全和寿命。
传感器量程的计算公式是在充分考虑到影响秤体的各个因素后,经过大量的实验而确定的。
公式如下:
C=K-0•K-1•K-2•K-3•(Wmax+W)/N
C—单个传感器的额定量程;W—秤体自重;Wmax—被称物体净重的最大值;N—秤体所采用支撑点的数量;K-0—保险系数,一般取值在1.2~1.3之间人;K-1—冲击系数;K-2—秤体的重心偏移系数;K-3—风压系数。
例如:一台30t电子汽车衡,最大称量是30t,秤体自重为1.9t,采用四只传感器,根据当时的实际情况,选取保险系数K-0=1.25,冲击系数K-1=1.18,重心偏移系数K-2—=1.03,风压系数K-3=1.02,试确定传感器的吨位。
解:根据传感器量程计算公式:
C=K-0K-1K-2K-3(Wmax+W)/N
可知:
C=1.25×1.18×1.03×1.02×(30+1.9)/4=12.36t
因此,可选用量程为15t的传感器(传感器的吨位一般只有10T、15T、20t、25t、30t、40t、50t等,除非特殊订做)。
根据经验,一般应使传感器工作在其30%~70%量程内,但对于一些在使用过程中存在较大冲击力的衡器,如动态轨道衡、动态汽车衡、钢材秤等,在选用传感器时,一般要扩大其量程,使传感器工作在其量程的20%~30%之内,使传感器的称量储备量增大,以保证传感器的使用安全和寿命。
再次,要考虑各种类型传感器的适用范围。
传感器型式的选择主要取决于称量的类型和安装空间,保证安装合适,称量安全可靠;另一方面,要考虑厂家的建议。厂家一般会根据传感器的受力情况、性能指标、安装形式、结构型式、弹性体的材质等特点规定传感器的适用范围,譬如铝式悬臂梁传感器适用于计价秤、平台秤、案秤等;钢式悬臂梁传感器适用于料斗秤、电子皮带秤、分选秤等;钢质桥式传感器适用于轨道衡、汽车衡、天车秤等;柱式传感器适用于汽车衡、动态轨道衡、大吨位料斗秤等。
最后,还要对传感器准确度等级进行选择。
传感器的准确度等级包括传感器的非线形、蠕变、蠕变恢复、滞后、重复性、灵敏度等技术指标。在选用传感器的时候,不要单纯追求高等级的传感器,而既要考虑满足电子秤的准确度要求,又要考虑其成本。
对传感器等级的选择必须满足下列两个条件:
1.满足仪表输入的要求。称重显示仪表是对传感器的输出信号经过放大、A/D转换等处理之后显示称量结果的。因此,传感器的输出信号必须大于或等于仪表要求的输入情号大小,即将传感器的输出灵敏度代人传感器和仪表的匹配公式,计算结果必须大于或等于仪表要求的输入灵敏度。
传感器和仪表的匹配公式:
传感器输出灵敏度*激励电源电压*秤的最大称量
秤的分度数*传感器的个数*传感器量程
例如:一称量为25kg的定量包装秤,最大分度数为1000个分度;秤体采用3只L—BE—25型传感器,量程为25kg,灵敏度为2.0±0.008mV/V,拱桥电压力12V;秤采用AD4325仪表。问采用的传感器能否与仪表匹配。
解:经查阅,AD4325仪表的输入灵敏度为0.6μV/d,因此根据传感器和仪表的匹配公式可得仪表的实际输入信号为:
2×12×25/1000×3×25=8μV/d>0.6μv/d
所以,采用的传感器满足仪表输入灵敏度的要求,能够与所选仪表匹配。
2.满足整台电子秤准确度的要求。一台电子秤主要是由秤体、传感器、仪表三部分组成,在对传感器准确度选择的时候,应使传感器的准确度略高于理论计算值,因为理论往往受到客观条件的限制,如秤体的强度差一点,仪表的性能不是很好、秤的工作环境比较恶劣等因素都直接影响到秤的准确度要求,因此要从各方面提高要求,又要考虑经济效益,确保达到目的。
 楼主| csxfjsw123 发表于 2007-5-1 16:40:55 | 显示全部楼层

电 阻 应 变 式 称 重 传 感 器

电 阻 应 变 式 称 重 传 感 器 等 工 作 原 理
电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。
由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述。
一、电阻应变片
电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。
设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R:
                    R = ρL/S(Ω) (2—1)
当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。
对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有:
                ΔR = ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2)
用式(2--1)去除式(2--2)得到
                ΔR/R = Δρ/ρ + ΔL/L – ΔS/S (2—3)
另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr*Δr,所以
                ΔS/S = 2Δr/r (2—4)
从材料力学我们知道
                Δr/r = -μΔL/L (2—5)
其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有
                ΔR/R = Δρ/ρ + ΔL/L + 2μΔL/L
                     =(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L
                     = K *ΔL/L (2--6)
其中
                 K = 1 + 2μ +(Δρ/ρ)/(ΔL/L) (2--7)
式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。
需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。
在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便
常常把它的百万分之一作为单位,记作με。这样,式(2--6)常写作:
ΔR/R = Kε (2—8)
 
二、弹性体
弹性体是一个有特殊形状的结构件。它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变棗电信号的转换任务。
以托利多公司的SB系列称重传感器的弹性体为例,来介绍一下其中的应力分布。
设有一带有肓孔的长方体悬臂梁。
肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。下面列出肓孔底部中心点的应变表达式,而不再推导。
ε = (3Q(1+μ)/2Eb)*(B(H2-h2)+bh2)/ (B(H3-h3)+bh3) (2--9)
其中:Q--截面上的剪力;E--扬氏模量:μ—泊松系数;B、b、H、h—为梁的几何尺寸。
需要说明的是,上面分析的应力状态均是“局部”情况,而应变片实际感受的是“平均”状态。
三、检测电路
检测电路的功能是把电阻应变片的电阻变化转变为电压输出。因为惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,所以惠斯登电桥在称重衅髦械玫搅斯惴旱挠τ谩?BR> 因为全桥式等臂电桥的灵敏度最高,各臂参数一致,各种干扰的影响容易相互抵销,所以称重传感器均采用全桥式等臂电桥。
 楼主| csxfjsw123 发表于 2007-5-1 16:41:36 | 显示全部楼层

称 重 传 感 器 常 用 技 术 参 数

称 重 传 感 器 常 用 技 术 参 数
一、用分项指标表示法 在介绍称重传感器技术参数时,传统的方法是采用分项指标,其优点是物理意义明确,沿用多年,熟悉的人较多。我们现在列出其主要项目如下:*额定容量 生产厂家给出的称量范围的上限值。
*额定输出(灵敏度)
加额定载荷时和无载荷时,传感器输出信号的差值。由于称重传感器的输出信号与所加的激励电压有关,所以额定输出的单位以mV/V来表示。并称之为灵敏度。
*灵敏度允差
传感器的实际稳定输出与对应的标称额定输出之差对该标称额定输出的百分比。例如,某称重传感器的实际额定输出为2.002mV/V,与之相适应的标准额定输出则为2mV/V,则其灵敏度允差为:((2.002 – 2。000)/2.000)*100% = 0.1%
*非线性
由空载荷的输出值和额定载荷时输出值所决定的直线和增加负荷之实测曲线之间最大偏差对于额定输出值的百分比。
*滞后允差
从无载荷逐渐加载到额定载荷然后再逐渐卸载。在同一载荷点上加载和卸载输出量的最大差值对额定输出值的百分比。
*重复性误差
在相同的环境条件下,对传感器反复加荷到额定载荷并卸载。加荷过程中同一负荷点上输出值的最大差值对额定输出的百分比。
*蠕变
在负荷不变(一般取为额定载荷),其它测试条件也保持不变的情形下,称重传感器输出随时间的变化量对额定输出的百分比。
*零点输出
在推荐电压激励下,未加载荷时传感器的输出值对额定输出的百分比。
*绝缘阻抗
传感器的电路和弹性体之间的直流阻抗值。
*输入阻抗
信号输出端开路,传感器未加负荷时,从电源激励输入端测得的阻抗值。
*输出阻抗
电源激励输入端短路,传感器未加载荷时,从信号输出端测得的阻抗。
*温度补偿范围
在此温度范围内,传感器的额定输出和零平衡均经过严密补偿,从而不会超出规定的范围。
*零点温度影响
环境温度的变化引起的零平衡变化。一般以温度每变化10K时,引起的零平衡变化量对额定输出的百分比来表示。
*额定输出温度影响
环境温度的变化引起的额定输出变化。一般以温度每变化10K引起额定定输出的变化量额定输出的百分比来表示。
*使用温度范围
传感器在此温度范围内使用其任何性能参数均不会产生永久性有害变化
二、在《OIML60号国际建议》中采用的术语。 以《OIML60号国际建议》92年版为基础,参考《JJG669--90称重传感器检定规程》新的技术参数大致有:
*称重传感器输出
被测量(质量)通过称重传感器转换而得到的可测量。
*称重传感器分度值
称重传感器的测量范围被等分后其中一份的大小。
*称重传感器检定分度值(V)
为了准确度分级,在称重传感器测试中采用的,以质量单位表达的称重传感器分度值。
*称重传感器最小检定分度值(Vmin)
称重传感器测量范围可以被分度的最小检定分度值勤。
*最小静负荷(Fsmin)
可以施加于称重传感器而不会超出最大允许误差的质量的最小值。
*最大称量
可以施加于称重传感器而不会超出最大允许误差的质量的最大值。
*非线性(L)
称重传感器进程校准曲线与理论直线的偏差。
*滞后误差(H)
施加同一级负荷时称重传感器输出读数之间的最大差值;其中一次是由最小静负荷开始的进程读数,另一次是由最大称量开始的回程读数。
*蠕变(Cp)
在负荷不变,所有环境条件和其它变量也保持不变的情况下,称重传感器满负荷输出随时间的变化。
*最小静负荷输出恢复植(CrFsmin)
负荷施加前,后测得的称重传感器最小静负荷输出之间的差值。
*重复性误差(R)
在相同的负荷和相同的环境条件下,使连续数次进行实验所得的称重传感器输出读数之间的差值。
*温度对最小静负荷输出的影响(Fsmin)
由于环境温度变化而引起的最小静负荷输出之间的变化。
*温度对输出灵敏度的影响(St)
由于环境温度变化而引起的输出灵敏度的变化。
*称重传感器测量范围
被测量(质量)值范围,测量结果在此范围内不会超出最大允许误差。
*安全极限负荷
可以施加于称重传感器的最大负荷,此时称重传感器在性能特征上,不会产生超出规定值的永久性漂移。
*温湿度对最小静负荷输出影响(FsminH)
由于温湿度变化而引起的最小静负荷输出的变化。
*温湿度对输出灵敏度的影响
由于温湿度变化而引起的输出灵敏度的变化。
此外,在《JJG699—90称重传感器检定规程》中,还列出了一个技术参数,即
*最小负荷(Fmin)
力发生装置能达到的最接近称重传感器最小静负荷的质量值。
正是因为传感器测量时,总要在测力机上进行,而又很难直接测量最小静负荷点性能。再要说明一点,《OIML60号国际建议》是专门为称重传感器而制定的,它对称重传感器的评定的出发点就是要适应衡器的要求。当传感器用于其它目的时,这种评估方式不一定最合适。
 楼主| csxfjsw123 发表于 2007-5-1 16:42:09 | 显示全部楼层

称 重 传 感 器 选 用 的 一 般 规 则

称 重 传 感 器 选 用 的 一 般 规 则
在电子衡器中,选用何种称重传感器,要全面衡量。下面就称重传感器的结构形式、量程,准确度等级的选择上讲述一般要考虑的几个方面。
一、 结构、形式的选择
选用何种结构形式的称重传感器,主要看衡器的结构和使用的环境条件。如要制作低外形衡器,一般应选用悬臂梁式和轮幅式传感器,若对外形高度要求不严,则可采用柱式传感器。此外,衡器使用的环境若很潮湿,有很多粉尘,则应选择密封形式较好的;若在有爆炸危险的场合,则应选用本质安全型传感器;若在高架称重系统中,则应考虑安全及过载保护;若在高温环境下使用,则应选用有水冷却护套的称重传感器;若在高寒地区使用,则应考虑采用有加温装置的传感器。
在形式选择中,有一个要考虑的因素是,维修的方便与否及其所需费用,即一旦称重系统出了毛病,能否很顺利、很迅速的获得维修器件。若不能做到就说明形式选择不够合适。
二、 量程的选择
称重系统的称量值越接近传感器的额定容量,则其称量准确度就越高,但在实际使用时,由于存在秤体自重、皮重及振动、冲击、偏载等,因而不同称量系统选用传感器的量限的原则有很大差别。作为一般规则,可有:
*单传感器静态称重系统:
固定负荷(秤台、容器等)+ 变动负荷(需称量的载荷)≤所选用传感器的额定载荷 X 70%
*多传感器静态称重系统:
固定负荷(秤台、容器等)+ 变动负荷(需称量的载荷)≤选用传感器额定载荷 X 所配传感器个数 X 70%
其中70%的系数即是考虑振动、冲击、偏载等因素而加的。
需要说明的是:首先,选择传感器得额定容量要尽量符合生产厂家的标准产品系列中的值,否则,选用了非标准产品,不但价格贵,而且损坏后难以代换。其次,在同一称重系统中,不允许选用额定容量不同的传感器,否则,该系统没法正常工作。再者,所谓变动负荷(需称量的载荷)是指加于传感器的真实载荷,若从秤台到传感器之间的力值传递过程中,有倍乘和衰减的机构(如杠杆系统),则应考虑其影响。
三、 准确度的选择
称重传感器的准确度等级的选择,要能够满足称重系统准确度级别的要求,只要能满足这项要求即可。即若2500分度的传感器能满足要求,切勿选用3000分度的。
若在一称重系统中使用了几只相同形式,相同额定容量的传感器并联工作时,其综合误差为Δ,则有:
Δ=Δ/ n1/2 (2—12)
其中:Δ:单个传感器的综合误差; n:传感器的个数。
另外,电子称重系统一般由三大部分组成,他们是称重传感器,称重显示器和机械结构件。当系统的允差为1时,作为非自动衡器主要构成部分之一的称重传感器的综合误差(Δ)一般只能达到0.7的比例成分。根据这一点和式(2--12),自不难对所需的传感器准确度作出选择。
四、 某些特殊要求应如何达到
在某些称重系统中,可能有一些特殊的要求,例如轨道衡中希望称重传感器的弹性变形量要小一些,从而可以使秤台在称量时的下沉量小些,使得货车在驶入和驶出秤台时,减小冲击和振动。另外,在构成动态称重系统时,不免要考虑所用称重传感器的自振频率,是否能满足动态测量的要求。这些参数,在一般的产品介绍中是不予列出的。因此当要了解这些技术参数时,应向制造商咨询,以免失误。
 楼主| csxfjsw123 发表于 2007-5-1 16:42:38 | 显示全部楼层

使 用 称 重 传 感 器 注 意 事 项

使 用 称 重 传 感 器 注 意 事 项
电阻应变式称重传感器本身是一种坚固、耐用、可靠的机电产品。但为了保证测试精度,我们仍有许多在使用中要注意的问题,下面列出一些基本要求。
一、 机械安装方面
称重传感器要轻拿轻放,尤其是由合金铝制作弹性体的小容量传感器,任何冲击、跌落,对其计量性能均可能造成极大损害。对于大容量的称重传感器,一般来说,它具有较大的自重,故而要求在搬运、安装时,尽可能使用适当的起吊设备(如手拉葫芦、电动葫芦等)。
安装传感器的底座安装面应平整、清洁,无任何油膜,胶膜等存在。安装底座本身应有足够的强度和刚性,一般要求高于传感器本身的强度和刚度。
水平调整:水平调整有两个方面的内容。一是单只传感器安装底座的安装平面要用水平仪调整水平,另一方面是指多个传感器的安装底座的安装面要尽量调整到一个水平面上(用水准仪),尤其是传感器数多于三个的称重系统中,更应注意这一点,这样做的主要目的是为了使各传感器所承受的负荷基本一致。
每种称重传感器的加载方向都是确定的,而我们使用时,一定要在此方向上加载负荷。横向力、附加的弯矩、扭矩力应尽量避免。
尽量采用有自动定位(复位)作用的结构配件,如球形轴承、关节轴承、定位紧固器等。他们可以防止某些横向力作用在传感器上。要说明的是:有些横向力并不是机械安装引起的,如热膨胀引起的横向力,风力引起的横向力,及某些容器类衡器上的搅拌器的振动引起的横向力即不是机械安装引起的。
某些衡器上有些必须接到秤体上的附件(如容器秤的输料管道等),我们应让他们在传感器加载主轴的方向上尽量柔软一些,以防止他们“吃掉”传感器的真实负荷合而引起误差。
称重传感器周围应尽量设置一些“挡板”,甚至用薄金属板把传感器罩起来。这样可防止杂物玷污传感器及某些可动部分,而这种“沾污”往往会使可动部分运动不爽,而影响称量精度。
系统有无运动不爽现象,可以用以下方法判别。即在秤台上加或减大约千分之一额定负荷看看称重显示仪是否有反映,有反映,说明可动部分未受“沾污”。
称重传感器虽然有一定的过载能力,但在称重系统安装过程中,仍应防止传感器的超载。要注意的是,即使是短时间的超载,也可能会造成传感器永久损坏。在安装过程中,若确有必要,可先用一个和传感器等高度的垫块代替传感器,到最后,再把传感器换上。
在正常工作时,传感器一般均应设置过载保护的机械结构件。
若用螺杆固定传感器,要求有一定的紧固力矩,而且螺杆应有一定的旋入螺纹深度。一般而言,固定螺杆因采用高强度螺杆。
传感器应采用铰合铜线(截面积约50mm2)形成电气旁路,以保护它们免受电焊电流或雷击造成的危害。
传感器使用中,必须避免强烈的热辐射,尤其是单侧的强烈热辐射。
二、 电气连接方面
传感器的信号电缆,不和强电电源线或控制线并行布置(例如不要把传感器信号线和强电电源线及控制线置于同一管道内)。若它们必须并行放置,那么,它们之间的距离应保持在50CM以上,并把信号线用金属管套起来。
不管在何种情况下,电源线和控制线均应绞合起来,合程度50转/米,若传感器信号线需要延长,则应采用特制的密封电缆接线盒。若不用此种接线盒,而采用电缆与电缆直接对接(锡焊端头),则应对密封防潮特别予以注意,接好后应检验绝缘电阻,且需达到标准(2000~5000M),必要时,应重新标定传感器。
若信号电缆线很长,又要保证很高的测量精度,应考虑采用带有中继放大器的电缆补偿电路。
所有通向显示电路或从电路引出的导线,均应采用屏蔽电缆。屏蔽线的联接及接地点应合理。如图2一9所示。若未通过机械框架接地,则在图2一9A处接地,但屏蔽线互相联接后未接地,是浮空的。
注意:有3只传感器是全并联接法,传感器本身是4线制,但在接线盒内换成6线制接法。
传感器输出信号读出电路不应和能产生强烈干扰的设备(如可”控硅,接触器等)及有可观热量产生的设备放在同一箱体中,若不能保证这一点,则应考虑在它们之间设置障板隔离之,并在箱体内安置风扇。
用以测量传感器输出信号的电子线路,应尽可能配置独立的供电变压器,而不要和接触器等设备共用同一主电源。
 楼主| csxfjsw123 发表于 2007-5-1 16:53:24 | 显示全部楼层

传感器的技术参数

传感器的技术参数
(1)额定载荷:传感器的额定载荷是指在设计此传感器时,在规定技术指标范围内能够测量的最大轴向负荷。但实际使用时,一般只用额定量程的2/3~1/3。
 (2)允许使用负荷(或称安全过载):传感器允许施加的最大轴向负荷。允许在一定范围内超负荷工作。一般为120%~150%。
 (3)极限负荷(或称极限过载):传感器能承受的不使其丧失工作能力的最大轴向负荷。意即当工作超过此值时,传感器将会受到损坏。 
 (4)灵敏度: 输出增量与所加的负荷增量之比。通常每输入1V电压时额定输出的mV。本公司产品与其它公司产品配套时,其灵敏系数必须一致。
 (5)非线性: 这是表征此传感器输出的电压信号与负荷之间对应关系的精确程度的参数。
 (6)重复性: 重复性表征传感器在同一负荷在同样条件下反复施加时,其输出值是否能重复一致,这项特性更重要,更能反映传感器的品质。国标对重复性的误差的表述:重复性误差可与非线性同时测定。传感器的重复性误差(R)按下式计算:R=ΔθR/θn×100%。ΔθR -- 同一试验点上3次测量的实际输出信号值之间的最大差值(mv)。
(7)滞后: 滞后的通俗意思是:逐级施加负荷再依次卸下负荷时,对应每一级负荷,理想情况下应有一样的读数,但事实上下一致,这不一致的程度用滞后误差这一指标来表示。国标中是这样来计算滞后误差的:传感器的滞后误差(H)按下式计算:H=ΔθH/θn×100%。ΔθH --同一试验点上3次行程实际输出信号值的算术平均与3次上行程实际输出信号值的算术平均之间的最大差值(mv)。
 (8)蠕变和蠕变恢复:要求从两个方面检验传感器的蠕变误差:其一是蠕变:在5-10秒时间无冲击地加上额定负荷,在加荷后5~10秒读数,然后在30分钟内按一定的时间间隔依次记下输出值。传感器蠕变(CP)按下式计算:CP=θ2 - θ3/θn×100%。其二是蠕变恢复:尽快去掉额定负荷(在5~10秒时间内),卸荷后在5~10秒内立即读数,然后在30分钟内按一定的时间间隔依次记下输出值。传感器的蠕变恢复(CR)按下式计算:CR=θ5 - θ6 /θn×100%。
 (9)允许使用温度:规定了此传感器能适用的场合。例常温传感器一般标注为:-20℃ --- +70℃。高温传感器标注为:-40℃ --- 250℃。
 (10)温度补偿范围:说明此传感器在生产时已在这样的温度范围内进行了补偿。例常温传感器一般标注为-10℃ - +55℃。
 (11)零点温度影响(俗称零点温漂):表征此传感器在环境温度变化时它的零点的稳定性。一般以每10℃范围内产生的漂移为计量单位。
 (12)输出灵敏系数的温度影响(俗称系数温漂):此参数表征此传感器在环境温度变化时输出灵敏度的稳定性。一般以每10℃范围内产生的漂移为计量单位。
(13)输出阻抗:本公司传感器与其它厂家传感器并联使用时,必须弄清该公司产品的输出阻抗,此值必须与其一致,否则它会直接影响电子秤的输出特征和四角误差的调试。
 (14)输入阻抗:由于传感器的输入端弹模补偿电阻和灵敏系数调整电阻,所以传感器的输入电阻都大于输出电阻,但可通过并联电阻方法使其变化。要求各传感器的输入阻抗一致,若与其它厂家的传感器匹配。则应使输入阻抗与其一致,否则在调试四角误差时会增加工时,因为传感器的输入阻抗对稳压电源而言是一个负载,只有负载一样,同一稳压电源才会提供一样的电源电压。
 (15)绝缘阻抗:绝缘阻抗相当于传感器桥路与地之间串了一个阻值与其相当的的电阻,绝缘电阻的大小会影响传感器的各项性能。而当绝缘阻抗低于某一个值时,电桥将无法正常工作。
 (16)推荐激励电压:一般为5~10伏。因一般称重仪表内配的稳压电源为5或10伏。
 (17)允许最大激励电压:为了提高输出信号,在某些情况下(例如大皮重)要求利用加大激励电压来获得较大的信号。
 (18)电缆长度:它与现场布局有关,定货前必须看清楚公司产品的常规电缆长度。另外,注意环境是否有腐蚀性、是否有冲击情况、是否高温或低温。
 (19)密封防护等级IP67:防浸水影响 ,以规定的压力和时间浸入水中性能不受影响 。灌胶保护的传感器可达到IP67。除可防油、防水外,还可防一般的腐蚀性气体,腐蚀性介质。
 楼主| csxfjsw123 发表于 2007-5-1 16:55:25 | 显示全部楼层

传感器新技术的发展

传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。输出信号有不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、控制要求,是自动检测系统和自动控制系统中不可缺少的元件。如果把计算机比作大脑,那么传感器则相当于五官,传感器能正确感受被测量并转换成相应输出量,对系统的质量起决定性作用。自动化程度越高,系统对传感器要求越高。在今天的信息时代里,信息产业包括信息采集、传输、处理三部分,即传感技术、通信技术、计算机技术。现代的计算机技术和通信技术由于超大规模集成电路的飞速发展,而已经充分发达后,不仅对传感器的精度、可靠性、响应速度、获取的信息量要求越来越高,还要求其成本低廉且使用方便。显然传统传感器因功能、特性、体积、成本等已难以满足而逐渐被淘汰。世界许多发达国家都在加快对传感器新技术的研究与开发,并且都已取得极大的突破。如今传感器新技术的发展,主要有以下几个方面:
一、发现并利用新现象
利用物理现象、化学反应、生物效应作为传感器原理,所以研究发现新现象与新效应是传感器技术发展的重要工作,是研究开发新型传感器的基础。 日本夏普公司利用超导技术研制成功高温超导磁性传感器,是传感器技术的重大突破,其灵敏度高,仅次于超导量子干涉器件。它的制造工艺远比超导量子干涉器件简单。可用于磁成像技术,有广泛推广价值。
利用抗体和抗原在电极表面上相遇复合时,会引起电极电位的变化,利用这一现象可制出免疫传感器。用这种抗体制成的免疫传感器可对某生物体内是否有这种抗原作检查。如用肝炎病毒抗体可检查某人是否患有肝炎,起到快速、准确作用。美国加州大学巳研制出这类传感器。
二、利用新材料
传感器材料是传感器技术的重要基础,由于材料科学进步,人们可制造出各种新型传感器。例如用高分子聚合物薄膜制成温度传感器;光导纤维能制成压力、流量、温度、位移等多种传感器;用陶瓷制成压力传感器。高分子聚合物能随周围环境的相对湿度大小成比例地吸附和释放水分子。高分子电介常数小,水分子能提高聚合物的介电常数。将高分子电介质做成电容器,测定电容容量的变化,即可得出相对湿度。利用这个原理制成等离子聚合法聚苯乙烯薄膜温度传感器,其有以下特点:
测湿范围宽;
温度范围宽,可达-400℃~ +1500℃;
响应速度快,小于1S;
尺寸小,可用于小空间测湿;
温度系数小。
陶瓷电容式压力传感器是一种无中介液的干式压力传感器。采用先进的陶瓷技术,厚膜电子技术,其技术性能稳定,年漂移量小于0.1%F.S,温漂小于±0.15%/10K,抗过载强,可达量程的数百倍。测量范围可从0到60mpa。德国E+H公司和美国Kavlio公司产品处于领先地位。
光导纤维的应用是传感材料的重大突破,其最早用于光通信技术。在光通信利用中发现当温度、压力、电场、磁场等环境条件变化时,引起光纤传输的光波强度、相位、频率、偏振态等变化,测量光波量的变化,就可知道导致这些光波量变化的温度、压力、电场、磁场等物理量的大小,利用这些原理可研制出光导纤维传感器。光纤传感器与传统传感器相比有许多特点:灵敏度高,结构简单、体积小、耐腐蚀、电绝缘性好、光路可弯曲、便于实现遥测等。光纤传感器日本处于先进水平。如Idec Izumi公司和Sunx公司。光纤传感受器与集成光路技术相结合,加速光纤传感器技术的发展。将集成光路器件代替原有 光学元件和无源光器件,使光纤传感器有高的带宽、低的信号处理电压,可靠性高,成本低。
三、微机械加工技术
半导体技术中的加工方法有氧化、光刻、扩散、沉积、平面电子工艺,各向导性腐蚀及蒸镀,溅射薄膜等,这些都已引进到传感器制造。因而产生了各种新型传感器,如利用半导体技术制造出硅微传感器,利用薄膜工艺制造出快速响应的气敏、湿敏传感器,利用溅射薄膜工艺制压力传感器等。
日本横河公司利用各向导性腐蚀技术进行高精度三维加工,制成全硅谐振式压力传感器。核心部分由感压硅膜片和硅膜片上面制作的两个谐振梁结成,两个谐振梁的频差对应不同的压力,用频率差的方法测压力,可消除环境温度等因素带来的误差。当环境温度变化时,两个谐振梁频率和幅度变化相同,将两个频率差后,其相同变化量就能够相互抵消。其测量最高精度可达0.01%FS。
美国Silicon Microstructure Inc.(SMI)公司开发一系列低价位,线性度在0.1%到0.65%范围内的硅微压力传感器,最低满量程为0.15psi(1KPa),其以硅为材料制成,具有独特的三维结构,轻细微机械加工,和多次蚀刻制成惠斯登电桥于硅膜片上,当硅片上方受力时,其产生变形,电阻产生压阻效应而失去电桥平衡,输出与压力成比例的电信号.象这样的硅微传感器是当今传感器发展的前沿技术,其基本特点是敏感元件体积为微米量级,是传统传感器的几十、几百分之一。在工业控制、航空航天领域、生物医学等方面有重要的作用,如飞机上利用可减轻飞机重量,减少能源。另一特点是能敏感微小被测量,可制成血压压力传感器。
中国航空总公司北京测控技术研究所,研制的CYJ系列溅谢膜压力传感器是采用离子溅射工艺加工成金属应变计,它克服了非金属式应变计易受温度影响的不足,具有高稳定性,适用于各种场合,被测介质范围宽,还克服了传统粘贴式带来的精度低、迟滞大、蠕变等缺点,具有精度高、可靠性高、体积小的特点,广泛用于航空、石油、化工、医疗等领域。
四、集成传感器
集成传感器的优势是传统传感器无法达到的,它不仅仅是一个简单的传感器,其将辅助电路中的元件与传感元件同时集成在一块芯片上,使之具有校准、补偿、自诊断和网络通信的功能,它可降低成本、增加产量,美国LUCAS、NOVASENSOR公司开发的这种血压传感器,每星期能生产1万只。
五、智能化传感器
智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多特点:
具有判断和信息处理功能,能对测量值进行修正、误差补偿,因而提高测量精度;
可实现多传感器多参数测量;
有自诊断和自校准功能,提高可靠性;
测量数据可存取,使用方便;
有数据通信接口,能与微型计算机直接通信。
把传感器、信号调节电路、单片机集成在一芯片上形成超大规模集成化的高级智能传感器。美国HONY WELL公司ST-3000型智能传感器,芯片尺寸才有3×4×2mm3,采用半导体工艺,在同一芯片上制成CPU、EPROM、静压、压差、温度等三种敏感元件。
智能化传感器的研究与开发,美国处于领先地位。美国宇航局在开发宇宙飞船时称这种传感器为灵巧传感器(Smart Sensor),在宇宙飞船上这种传感器是非常重要的。我国在这方面的研究与开发还很落后,主要是因为我国半导体集成电路工艺水平有限。
传感器的发展日新月异,特别是80年代人类由高度工业化进入信息时代以来,传感器技术向更新、更高的技术发展。美国、日本等发达国家的传感器技术发展最快,我国由于基础薄弱,传感器技术与这些发达国家相比有较大的差距。因此,我们应该加大对传感器技术研究、开发的投入,使我国传感器技术与外国差距缩短,促进我国仪器仪表工业和自化化技术的发展。
信息来源: 中国自动化网
 楼主| csxfjsw123 发表于 2007-5-1 16:56:02 | 显示全部楼层

世界传感器技术研究情况简介

世界传感器技术研究情况简介
传感器是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,美国早在80年代就声称世界已进入传感器时代,日本则把传感器技术列为十大技术之创立。日本工商界人士声称“支配了传感器技术就能够支配新时代”。世界技术发达国家对开发传感器技术部十分重视。美、日、英、法、德和独联体等国都把传感器技术列为国家重点开发关键技术之一。美国国家长期安全和经济繁荣至关重要的22项技术中有6项与传感器信息处理技术直接相关。关于保护美国武器系统质量优势至关重要的关键技术,其中8项为无源传感器。美国空军2000年举出15项有助于提高21世纪空军能力关键技术,传感器技术名列第二。日本对开发和利用传感器技术相当重视并列为国家重点发展6大核心技术之一。日本科学技术厅制定的90年代重点科研项目中有70个重点课题,其中有18项是与传感器技术密切相关。美国早在80年代初就成立了国家技术小组(BTG),帮助政府组织和领导各大公司与国家企事业部门的传感器技术开发工作。
传感器技术是一项当今世界令人瞩目的迅猛发展起来的高新技术之一,也是当代科学技术发展的一个重要标志,它与通信技术、计算机技术构成信息产业的三大支柱之一。如果说计算机是人类大脑的扩展,那么传感器就是人类五官的延伸,当集成电路、计算机技术飞速发展时,人们才逐步认识信息摄取装置——传感器没有跟上信息技术的发展而惊呼“大脑发达、五官不灵”。传感器开始受到普遍重视,从八十年代起,逐步在世界范围内掀起了一股“传感器热”。美国国防部将传感器技术视为今年20项关键技术之一,日本把传感器技术与计算机、通信、激光半导体、超导并列为6大核心枝术,德国视军用传感器为优先发展技术,英、法等国对传感器的开发投资逐年升级,原苏联军事航天计划中的第五条列有传感器技术。正是由于世界各国普遍重视和投入开发,传感器发展十分迅速,在近十几年来其产量及市场需求年增长率均在10%以上。目前世界上从事传感器研制生产单位已增到5000余家。美国、欧洲、俄罗斯各自从事传感器研究和生产厂家1000余家,日本有800余家。
英特尔公司于当地时间本周三宣布,它已经发明了一种绝缘晶体管的突破性新方法,解决了半导体产业面临的最基本问题之一:在减少电能损耗和发热量的同时使计算机芯片越来越小。
  随着半导体厂商在芯片中“塞入”的晶体管越来越多,晶体管就会出现电子泄露的问题。这意味着功能强大的芯片需要更多的电能,缩短了电池使用时间,并造成计算机散发大量热量,使笔记本电脑变得烫手,企业则需要为服务器系统建立昂贵的冷却系统。
  英特尔公司称,为了解决这一问题,它已经找到了一种绝缘金属材料,以取代目前晶体管中普遍使用的二氧化硅。二氧化硅在晶体管中的使用已经有三十年的历史了。英特尔公司的技术分析师威罗纳尔说,能耗问题是半导体产业目前遇到的最大难题,我们的技术是对晶体管的重新设计。
  当在芯片上集成的晶体管越来越多时,二氧化硅绝缘层会变得非常薄,使电流能够泄露出去。英特尔公司的解决方案是一种被称为“高K绝缘体”的较厚的金属材料,使晶体管不会发生电流泄露。
  为了提高芯片的运算能力,英特尔公司及其竞争对手在芯片中集成的晶体管数目越来越大。例如,1993年推出的奔腾芯片集成了310万个晶体管,奔腾4芯片则集成了5500万个晶体管,英特尔公司在2007年推出的芯片预计将集成10亿个以上的晶体管。
  英特尔公司的创始人之一戈登·摩尔在1965年提出了著名的摩尔定律,即芯片上集成的晶体管数量每18个月就会翻一番。今年2月份,他预测说,摩尔定律在未来10年内还会继续生效,但他警告说,为了减少芯片的发热量,必须首先解决电流泄露的问题。
  威罗纳尔表示,由于新的绝缘材料与现有的硅栅极不兼容,英特尔公司还将在栅极中使用金属材料。
  英特尔公司没有披露新材料的成份。英特尔公司称,它将在2007年使用这种新技术,届时,它还将开始使用0.045微米生产工艺。   

信息来源:传感器资讯网
 楼主| csxfjsw123 发表于 2007-5-1 17:01:31 | 显示全部楼层

其他-传感器选用指南

传感器选用指南
      

传感器选用指南
 传感器的种类选择
 压电式传感器的敏感芯体材料和结构形式
 压电式加速度传感器的信号输出形式
 传感器灵敏度,量程和频率范围的选择
 传感器的整体封装设计与电缆
 外界环境对测量传感器的影响
工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。
  描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。
  最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。
• 传感器的种类选择。
o 压电式- 原理和特点
  压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。
o 压阻式
  应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。超小型化的设计也是压阻式传感器的一个亮点。需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。
o 电容式
  电容型加速度传感器的结构形式一般也采用弹簧质量系统。当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。
• 压电式传感器的敏感芯体材料和结构形式
o 压电材料
  压电材料一般可以分为两大类,即压电晶体和压电陶瓷。在压电型加速度计的最常用的压电晶体为石英,其特点为工作温度范围宽,性能稳定,因此在实际应用中经常被用作标准传感器的压电材料。由于石英的压电系数比其他压电材料低得多,因此对通用型压电加速度计而言更为常用的压电材料为压电陶瓷。压电陶瓷中锆钛酸铅(PZT)是目前压电加速度计中最经常使用的压电材料。其特点为具有较高的压电系数和居里点,各项机电参数随温度时间等外界条件的变化相对较小。必须指出的是,就同一品种的压电陶瓷而言,虽然都有相同的基本特性,但由于制作工艺不同可以使两个相同材料的压电陶瓷的具体性能指标相差甚大。这种现象可以通过典型的国产传感器和进口传感器的比较得以反映,国内振动测试业几十年的经验对此深有体会。
o 传感器敏感芯体的结构形式
  压电加速度传感器的敏感芯体一般由压电材料和附加质量块组成,当质量块受到加速度作用后便转换成一个与加速度成正比并加载到压电材料上的力,而压电材料受力后在其表面产生一个与加速度成正比的电荷信号。压电材料的特性决定了作用力可以是受正应力也可以是剪应力,压电材料产生的电荷大小随作用力的方向以及电荷引出表面的位置而变。根据压电材料不同的受力方法,常用传感器敏感芯体的结构一般有以下三种形式:
 压缩形式– 压电材料受到压缩或拉伸力而产生电荷的结构形式。压缩式敏感芯体是加速度传感器中最为传统的结构形式。其特点是制造简单方便,能产生较高的自振谐振频率和较宽的频率测量范围。而最大的缺点是不能有效地排除各种干扰对测量信号的影响。
 剪切形式– 通过对压电材料施加剪切力而产生电荷的结构形式。从理论上分析在剪切力作用下压电材料产生的电荷信号受外界干扰的影响甚小,因此剪切结构形式成为最为广泛使用的加速度传感器敏感芯体。然而在实际制造过程中,确保剪切敏感芯体的加速度计持有较高和稳定的频率测量范围却是传感器制造中工艺中最为困难的一个环节。北智BW-Sensor 采用进口记忆金属材料的紧固件从而保证传感器具有稳定可靠的谐振频率和频率测量范围。
 弯曲变形梁形式- 压电材料受到弯曲变形而产生电荷的结构形式。弯曲变形梁结构可产生比较大的电荷输出信号,也较容易实现控制阻尼;但因为其测量频率范围低,更由于此结构不能排除因温度变化而极容易产生的信号漂移,所以此结构在压电型加速度计的设计中很少被采用。
• 压电式加速度传感器的信号输出形式
o 电荷输出型
  传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。北智BW-Sensor采用进口陶瓷的加速度计可在温度-40oC~250oC 范围内长期使用。
o 低阻抗电压输出型(IEPE)
  IEPE 型压电加速度计即通常所称的ICP 型压电加速度计。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE 型传感器通常为二线输出形式,即采用恒电流电压源供电;直流供电和信号使用同一根线。通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE 型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE 传感器能与数采系统直接相连而不需要任何其它二次仪表。在振动测试中IEPE 传感器已逐渐取代传统的电荷输出型压电加速度计。
• 传感器的灵敏度,量程和频率范围的选择
  压电型式的加速度计是振动测试的最主要传感器。虽然压电型加速度计的测量范围宽,但因市场上此类加速度计品种繁多,所以给正确的选用带来一定的难度。作为选用振动传感器的一般原则:正确的选用应该基于对测量信号以下三方面的分析和估算。
o 被测振动量的大小
o 被测振动信号的频率范围
o 振动测试现场环境
以下将针对上述三个方面并参照传感器的相关技术指标对具体的选用作进一步地讨论
根据被测振动量的大小加速度测量范围与灵敏度的选择
• 传感器的灵敏度与量程范围
  传感器的灵敏度是传感器的最基本指标之一。灵敏度的大小直接影响到传感器对振动信号的测量。不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于压电加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平方成正比,所以不同频段的加速度信号大小相差甚大。大型结构的低频振动其振动量的加速度值可能会相当小,例如当振动位移为 1mm, 频率为1 Hz 的信号其加速度值仅为0.04m/s2(0.004g);然而对高频振动当位移为0.1mm,频率为10 kHz的信号其加速度值可达4 x 10 5m/s2 (40000g)。因此尽管压电式加速度传感器具有较大的测量量程范围,但对用于测量高低两端频率的振动信号,选择加速度传感器灵敏度时应对信号有充分的估计。最常用的振动测量压电式加速度计灵敏度,电压输出型(IEPE 型)为50~100 mV/g,电荷输出型为10 ~ 50 pC/g。
  加速度值传感器的测量量程范围是指传感器在一定的非线性误差范围内所能测量的最大测量值。通用型压电加速度传感器的非线性误差大多为1%。作为一般原则,灵敏度越高其测量范围越小,反之灵敏度越小则测量范围越大。
  IEPE电压输出型压电加速度传感器的测量范围是由在线性误差范围内所允许的最大输出信号电压所决定,最大输出电压量值一般都为±5V。通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。需要指出的是IEPE压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感器偏置电压的制约。当供电电压与偏置电压的差值小于传感器技术指标给出的量程电压时,传感器的最大输出信号就会发生畸变。因此IEPE 型加速度传感器的偏置电压稳定与否不仅影响到低频测量也可能会使信号失真;这种现象在高低温测量时需要特别注意,当传感器的内置电路在非室温条件下不稳定时,传感器的偏置电压很可能不断缓慢地漂移而造成测量信号忽大忽小。
  而电荷输出型测量范围则受传感器机械刚度的制约,在同样的条件下传感敏感芯体受机械弹性区间非线性制约的最大信号输出要比IEPE型传感器的量程大得多,其值大多需通过实验来确定。一般情况下当传感器灵敏度高,其敏感芯体的质量块也就较大,传感器的量程就相对较小。同时因质量块较大其谐振频率就偏低这样就较容易激发传感器敏感芯体的谐振信号,结果使谐振波叠加在被测信号上造成信号失真输出。因此在最大测量范围选择时,也要考虑被测信号频率组成以及传感器本身的自振谐振频率,避免传感器的谐振分量产生。同时在量程上应有足够的安全空间以保证信号不产生失真。
  加速度传感器灵敏度的标定方法通常采用比较法检定,被校传感器在特定频率(通常为159 Hz 或80 Hz)振动的输出与标准传感器读得加速度值的比即为传感器灵敏度。而对冲击传感器的灵敏度则通过测量被校传感器对一系列不同冲击加速度值的输出响应,获得传感器在其测量范围内输入冲击加速度值和电输出之间的对应关系,再通过数值计算获得与各点之间差值最小的直线,而这直线的斜率即是传感器的冲击灵敏度。
  冲击传感器的非线性误差可以有两种方法表示:全量程偏差或按分段量程的线性误差。前者是指传感器的全量程输出为基准的误差百分数,即无论测量值得大小其误差均为按全量程百分数计算而得的误差值。按分段量程的线性误差其计算方法与全量程偏差相同,但基准不用全量程而是以分段量程来计算误差值。例如量程为20000g 的传感器,如全量程偏差为1% ,其线性误差在全量程内为200g;但当传感器按分段量程5000g ,10000g ,20000g 来衡量其线性误差,其误差仍为1% 时,则传感器在不同的3个量程段内线性误差则分别为50g ,100g ,200g。
• 传感器的测量频率范围
  传感器的频率测量范围是指传感器在规定的频率响应幅值误差内(±5%, ±10%, ±3dB)传感器所能测量的频率范围。频率范围的高,低限分别称为高,低频截至频率。截至频率与误差直接相关,所允许的误差范围大则其频率范围也就宽。作为一般原则,传感器的高频响应取决于传感器的机械特性,而低频响应则由传感器和后继电路的综合电参数所决定。高频截止频率高的传感器必然是体积小,重量轻,反之用于低频测量的高灵敏度传感器相对来说则一定体积大和重量重。
o 传感器的高频测量范围
  传感器的高频测量指标通常由高频截止频率来确定,而一定截止频率与对应的幅值误差相联系;所以传感器选用时不能只看截至频率,必须了解对应的幅值误差值。传感器的频率幅值误差小不仅是测量精度提高,更重要的是体现了传感器制造过程中控制安装精度偏差地能力。另外由于测量对象的振动信号频率带较宽,或传感器的固有谐振频率不够高,因而被激发的谐振信号波可能会叠加在测量频带内的信号上,造成较大的测量误差。所以在选择传感器的高频测量范围时除高频截至频率外,还应考虑谐振频率对测量信号的影响;当然这种测量频段外的信号也可通过在测量系统中滤波器给予消除。
  一般情况下传感器的高频截止频与输出信号的形式(即电荷型或低阻电压型)无关;而与传感器的结构设计,制造以及安装形式和安装质量都密切相关。以下表格是对不同型式加速度传感器的高频响应作一个定性的归类,供用户在选用时对比和参考。
高频响应 外形, 重量和灵敏度 敏感芯体形式 总体设计 安装形式
最好 体积小, 重量轻, 低灵敏度 压缩型 单层壳通用型 螺钉安装
好 通用型 剪切型 单层壳带绝缘座 吸铁, 粘接
差 个大, 体重, 高灵敏度 弯曲梁形式 双层屏蔽壳 手持
对加速度传感器的高频测量应用请参考应用-〉高频测量
o 传感器的低频测量范围
  与传感器高频指标相对应,传感器的低频测量指标通常由低频截止频率来确定,同样一定低频截止频率与对应的幅值误差相关。和高频特性不同,传感器的低频特性与传感器的任何机械参数无关,而仅取决于传感器的电特性参数。当然传感器作为测量系统的某一部分,测量信号的低频特性还将受到与传感器配用的后继仪器电参数的制约。根据输出信号的不同形式,以下将对电荷输出和低阻电压输出加速度传感器分别给与讨论。
  尽管电荷型输出加速度传感器列出低频截止频率,但一般都给予指出测量信号的低频特性由后继电荷放大器确定。在实际应用中,当电荷型传感器的芯体绝缘阻抗远大于电荷放大器输入端的输入阻抗时,由传感器和电荷放大器组成的测量系统其低频截至频率应该由电荷放大器的低频特性所决定。但是如果传感器的芯体绝缘阻抗下降,此时传感器则可能影响整个测量系统的低频特性。因此保证芯体的绝缘阻抗对电荷输出型加速度传感器的低频测量非常重要。
  对于IEPE 传感器配用的恒流电压源,其通常的低频截至频率为0.1 Hz (-5%)。因此一般情况下测量系统的低频特性是由传感器的低频截至频率所决定。通用型传感器的低频截止频率大多为0.5 Hz~1 Hz, 专门用于低频测量的传感器低频截至频率可扩展到0.1 Hz。由于传感器的低频校验比较困难,所以制造厂商一般只提供10 Hz以上的测试数据。但传感器的低频特性与一阶高通滤波器非常吻合,所以用户可以通过实测时间常数来检查传感器的实际低频响应。
对加速度传感器的低频测量应用请参考应用-〉低频测量
用IEPE 型压电型加速度传感器测量甚低频加速度信号还需要注意的问题有:
• 当传感器和恒流电压源交流耦合的低频截至频率相当时,测量系统的低频特性是由传感器和恒流电压源的各自低频响应组合而成,此时测量系统的低频截止频率要高于传感器或恒流电压源各自的低频截止频率。理想的测量系统传感器应配用带直流平衡的恒流电压源,这样系统的低频响应将完全取决于传感器的低频截至频率。
• 当传感器用于甚低频测量时,能否准确测量低频信号并不完全决定与系统的低频响应特性,系统的低频电噪声大小也将直接影响低频信号的测量。另外传感器的瞬态温度响应大小也将直接影响传感器的低频测量。
• 传感器的整体封装设计与电缆
o 传感器的封装形式
  压电式传感器的工作原理是利用敏感芯体的压电效应,而压电材料产生的是高阻抗的电荷信号。传感器敏感芯体的绝缘阻抗与传感器的低频测量截止频率存在着相互对应的关系。为了保证传感器的低频响应,传感器壳体封装设计应使敏感芯体与外界隔绝,以防止压电陶瓷受到任何污染而导致其绝缘阻抗下降。敏感芯体绝缘阻抗下降对传感器性能造成的直接影响表现为低频响应变差,严重时还将造成传感器灵敏度改变。为保证传感器的密封特性,大多传感器的封装采用激光焊接。同时在当今密封材料品种多样,性能日益完善的情况下,针对不同的使用环境,采用合适的密封材料替代激光焊接也能达到传感器密封的要求。但必须指出不同的密封材料效果差异很大。北智公司采用国外知名凭牌的密封材料并经过通过了多年的环境厉行试验验证。
  在工业现场测试现场,为防止电磁场对传感器信号的影响,对用于工业现场的在线监测传感器往往要求传感器采用双重屏蔽壳封装形式。双层屏蔽结构的传感器输出接头一般采用双芯工业接头或联体电缆输出形式。由于双层屏蔽壳的结构特点和双芯输出电缆,传感器的高频特性一般将受到较大的制约,因此如果用户必须选用双层屏蔽型传感器进行高频振动信号测量,应谨慎考虑。
o 传感器输出接头形式
  M5 (M6) 接头是加速度传感器最为常用的输出接头形式。M5接头特点是尺寸较小,一般配用直径较细的电缆 (2mm 或 3mm ),比较适合振动实验的测试。另外M5 (M6) 的结构型式对信号屏蔽较好,所以对电荷输出型加速度传感器因其输出为较容易受干扰的高阻抗信号一般均采用M5 (M6) 接头。测量振动的加速度传感器接头一般避免使用Q9 (BNC), 原因是Q9 (BNC),接头组件没有螺纹联接,构件之间的机械耦合刚度较低;因此如果加速度传感器输出采用Q9(BNC),,其将会影响传感器的高频响应。
  用于工业环境下的振动测量加速度传感器按可分为巡回检测和在线监测,前者一般采用单层壳屏蔽型式,因此传感器的接头较多使用M6 或TNC接头。而在线监测因经常采用双层屏蔽的结构型式,与其对应的电缆为双芯屏蔽电缆,所以双芯工业接头如M12, M16 以及C5015均被广泛使用。另外连体电缆具有较高的可靠性,因此在工业环境下使用的传感器无论是单层和双层屏蔽的结构都广泛采用连体电缆为输出接头的形式。
需要指出的是无论是那一种输出接头对水下测量都有其局限性,即使传感器本身密封性能达到要求,但电缆联接一般都需要做特殊处理后才能用于水下测量。
o 电缆的选择
  对输出为高阻抗信号的电荷型压电型传感器而言,为保证测量信号不受因电缆移动而造成噪声的影响,传感器的输出信号电缆一般都采用低噪声电缆。而输出为低阻抗电压信号的IEPE 传感器,低噪声电缆并不一定是必需的。高频,低频信号对电缆不同要求的典型的例子是多轴向测量传感器的电缆,多通道高阻抗信号的电缆必须是各自独立的低噪声屏蔽电缆,而多通道低阻抗的电压信号便可采用多芯绞线加屏蔽的电缆。
  在通用型传感器的电缆配备中因考虑到电缆的重量和成本,Φ2 mm 直径的低噪声电缆为加速度传感器的标准配置。工业现场用的传感器一般以IEPE 型为主,电缆本身的强度也成为重要考虑因素,因此Φ3 mm 直径的低噪声电缆和Φ4.5 mm 直径的普通同轴屏蔽电缆成为最长使用的电缆。而对双层屏蔽壳设计的IEPE 型传感器的电缆配置均为双绞芯线外加屏蔽的电缆。
  在加速度传感器输出信号电缆的选择中,除电缆结构外,其他最经常考虑的指标是电缆的应用温度以及在工业现场测试中电缆外层材料耐腐蚀的能力。最为普遍使用的电缆绝缘材料为PVC, 使用温度范围为-40oC 到+105oC 。对应用环境较恶劣的场合,最经常选用的电缆绝缘材料为聚四氟乙烯;其使用温度范围为-45oC 到+250oC,且耐腐蚀能力也优于其它大多数电缆绝缘材料。但用四氟材料做的电缆柔性较差,价格也远高于PVC 材料。
• 外界环境对测量传感器的影响
o 传感器横向灵敏度及横向振动对测量的影响
  由于压电材料自身特性,敏感芯体的结构设计和制造精度偏差使传感器不可避免地对横向振动产生输出信号,其大小由横向输出和垂直方向输出的比值百分数来表示。
  根据不同敏感芯体结构和材料特性的组合,压缩型结构在理论上便存在横向输出,需要通过装配调节的方式给予抵消,而在实际制造过程中很难实现真正的抵消,因此压缩型加速度传感器的横向灵敏度的离散度很大。与压缩型相比剪切型设计在理论上不存在横向输出,传感器的实际横向输出一般是由材料加工和装配精度所引起的误差。所以从这两种敏感芯体的实际对比结果来看,剪切型压电加速度传感器的横向灵敏度普遍优于压缩型式。而敏感芯体为弯曲梁结构形式的横向灵敏度一般说介于剪切型和压缩型之间。根据敏感芯体的结构特性,在其受横向振动时与垂直方向振动一样,也有相应的结构频率响应。所以横向振动也同样可能在某一频率点产生谐振,以至产生较大的横向振动偏差。
o 温度对传感器输出的影响
  温度改变而引起传感器输出变化是由压电材料(敏感芯体)特性所造成的。根据压电材料的分类,石英晶体受温度影响最小,而人工合成晶体的使用温度甚至高于石英;但在商业化的压电加速度传感器中最多使用的压电材料还是压电陶瓷。压电陶瓷敏感芯体的输出高温时随温度上升而增大,低温时随温度降低而减小;但传感器输出与温度间并不呈线性变化,一般说低温时的输出变化比高温时的要大。另因为各传感器的温度响应很难保持一致,所以实际使用中传感器的输出一般很少用温度系数进行修正。典型温度响应曲线或温度系数一般只作为对传感器温度特性的衡量。压电陶瓷对温度响应除材料本身特性之外,生产工艺也将直接影响压电材料对温度的响应,而同种材料对温度响应的离散度更是如此。同样是锆钛酸铅材料,不同的厂商由于采用不同的生产工艺,使得相同材料的压电陶瓷而其各自的使用温度范围,温度响应和温度响应的离散度相差甚大。综合对压电材料的基础研究和生产加工工艺,目前国内压电陶瓷的温度特性与国外先进水准相比还有一定差距;为确保用户对传感器的特殊要求,北智采用进口压电陶瓷,使传感器的高温使用温度可在 +250oC 下长期使用,而且温度响应及其离散度都好于国产压电陶瓷。
  不同的敏感芯体结构设计对温度的变化的响应会产生不同的结果。由于不同材料有不同的线膨胀系数,因此温度变化必然使压电材料和金属配件之间产生因线膨胀系数不同而造成的应力变化;这种由温度产生的应力使压缩式和弯曲梁型的敏感芯体产生输出信号,有时这种温度变化引起的输出会大于振动测量信号(特别在低频测量中)。需要特别指出温度变化有稳态和瞬态两种,传感器输出灵敏度随温度变化通常是指稳态高低温度状态对信号输出的影响。瞬态温度变化对传感器输出的影响主要表现在低频测量中,请参看应用〉低频测量
o 传感器的基座应变灵敏度
  传感器受被测物体在传感器安装处应变的影响,可能导致传感器输出的变化。传感器的基座应变灵敏度一般由传感器基座刚度,传感器与被测件的接触面积以及敏感芯体结构设计形式所决定。剪切结构形式的敏感芯体与传感器基座间的接触面积很小,因而剪切芯体受基座应变的作用也相对较小,且这种应变并不直接导致压电陶瓷的输出。所以剪切敏感芯体传感器的基座应变灵敏度指标通常比压缩式的要好,在无需改变传感器的基座刚度以及与被测件的接触面积情况下(改变这两点都将影响传感器的频率响应指标),剪切型传感器一般都能满足大部分结构测量的要求。
o 声场和磁场对传感器的影响
  声波和磁场对传感器的作用也都可能引起信号输出,这种输出的大小与传感器灵敏度的比值被称作为压电传感器的声灵敏度和磁灵敏度。
  声灵敏度是表示传感器在强声场(140dB)的作用下,加速度传感器的输出值。加速度信号输出主要是声波通过对传感器外壳体的作用,再由外壳体传输给内部的敏感芯体而导致的信号输出。最直接减小传感器声灵敏度的方法是增加传感器外壳的厚度,绝大多数传感器的这一指标都能满足通常的测量条件。
  磁灵敏度是表示传感器在强交变磁场作用下,加速度传感器的输出值。传感器内部敏感芯体受磁力的作用而导致信号输出是传感器产生磁灵敏度的基本原因。因此在传感器设计中,金属零部件尽量采用无磁或弱磁的材料是降低传感器磁灵敏度最直接的措施。另外双层屏蔽壳结构形式也能较好地减小传感器的磁灵敏度,同时双层屏蔽壳形式还能有效地防止磁场对输出电信号的干扰。

来自:http://www.gkong.com/learn/learn_detail.asp?learn_id=1299

 楼主| csxfjsw123 发表于 2007-5-2 09:29:01 | 显示全部楼层

传感器的分类(转贴)

传感器的分类(转贴)
    
目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:
  1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器
  2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。
  3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。
  
三、传感器的静态特性
    
  传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。
  
四、传感器的动态特性
    
  所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。
  
五、传感器的线性度
    
  通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。
  拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。
  
六、传感器的灵敏度
    
  灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。
  
  它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。
  灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。
  当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
  提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
  
七、传感器的分辨力
    
  分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。
  通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。
  
八、电阻式传感器
  
  电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。
  
九、电阻应变式传感器
  
  传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。
  
十、压阻式传感器
  
  压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。
  
  用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。
  
十一、热电阻传感器
  
  热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。
  
十二、传感器的迟滞特性
    
  迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。
  
  迟滞可由传感器内部元件存在能量的吸收造成。

评分

参与人数 1威望 +2 金币 +5 收起 理由
zcyjkl + 2 + 5 称重传感器

查看全部评分

nbuyqf 发表于 2007-7-24 13:37:09 | 显示全部楼层
这对称重传感器的人员来说是非常全面和详细的资料
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|计量论坛 ( 闽ICP备06005787号-1—304所 )
电话:0592-5613810 QQ:473647 微信:gfjlbbs闽公网安备 35020602000072号

GMT+8, 2024-5-13 23:52

Powered by Discuz! X3.4

Copyright © 2001-2023, Tencent Cloud.

快速回复 返回顶部 返回列表