四、单弯头配置.(基本配置)
试验表明,单弯头引起了大量的水平流速分布的不对称。这种不对称在40D处依然存在,且再到下游59D和78D处,流速分布虽更对称了,但还未达到充分的均衡发展。直到97D处,流速分布才接近达到充分均衡发展的状态。试验也比较了不同轴向位置上的水平流速分布测量量和充分发展的水平流速分布计算量,计算方法是采用依据公称雷诺数和管内估算粗糙度的幂律模型。97D处的流速分布图与充分发展的流速分布计算图形是相近的,59D和78D处的流速分布图上则还有少量的径向不对称,且比97D处的流速分布更紊乱。

图3 流量计M1在单弯头下游的声路响应 图3和图4分别给出了由多路式超声流量计Ml和M3的流速分布测量数据计算而得的各声路响应系数。对于流量计M1,图3表明了各声路对发展过程中的流动的敏感性,其中单程声路(声路2)的敏感性从10D到97D处至少提高了3%,而同时双程声路(声路1和3) 的敏感性在相同间距上大约下降了1.5%。由于流量计量是综合了多个声路的测量结果,因此多路式超声流量计的综合敏感性不一定与其某个单声路的敏感性具有相同的变化趋势。同样由于这里给出的数据结果都是对单一雷诺数而言的,因此单路式超声流量计对轴向位置的敏感性与其对超声声路的敏感性是相同的。
图4包含了由多路式超声流量计M3自测的和由流速分布测量数据计算而得的各声路响应系数。流量计M3的声路配置是水平对称的,因此对声路1和4,还有声路2和3之间应有相近的声路响应系数。然而流量计显示各对对称声路之间的响应系数是不同的,这一点被探头的测算结果证实了,如图4中的空心和实心符号所示。10D位置上的测算结果表明:声路1和4存在很大的差异,这是两种逆转旋涡的作用结果。由于声路位置和方向的原因,旋涡增加了声路4的响应系数,而减小了声路1的响应系数。 
图4 流量计M3在单弯头下游的声路响应 图5给出了流量计Ml和M3的测量值、相对于97D处测量结果的仪表误差以及流量计M3相对于流速分布测量结果的误差。由于流量计Ml的声路混合算法属于专利,无法计算它的总响应系数。为减少因流速分布测量和计算方法引起的测量偏差,并对此予以修正,测算结果均以97D处为基准进行比较。比较结果表明:流量计Ml有着与轴向位置无关的系统特性,而流量计M3的性能则显然与轴向位置有关(测试范围从40D至97D)。流量计Ml的流速分布测算值和测量值之间具有相同的变化趋势。除了10D处的测算值之外,对比误差与轴向位置无关。在10D处可能会出现稍大的误差。 
图5 流量计对单弯头扰动的响应 五、同平面双弯头配置
同平面双弯头配置试验表明,10D处具有相对平滑的流速分布曲线,并且一直持续到19D处。
使用19管的管束整流器后,流速分布等值线还不如光管测量时对称。这种不对称是由于管束消除旋涡时导致流动的重新混合而产生的。一旦消除了这种流速混合矢量,流动的进一步发展和再重新分布则取决于管壁摩擦。
加装GFCTM时10D和19D处测得的流速分布等值线表明,10D处等值线与97D基准位置处的等值线形状相近,但有少量的径向不对称。19D处的等值线则更趋近充分发展的状态,但仍有些不对称。
表1和表4提供了四种测量配置条件下的声路响应系数计算值。在两表中均包含基准声路响应系数,也就是97D处流速分布数据测算的声路响应系数和流量计Ml、M3的实测测量误差(相对于97D处)。在本配置条件下未测试单路式超声流量计M2和M4。在10D处,靠近管壁声路的响应系数比97D基准值大(对Ml为声路1和3,对M3为声路1和4),而靠近管轴声路的响应系数则比97D基准值小(对Ml为声路2,对M3为声路2和3)。这是由于所示的等值线相对平滑的缘故。径向分布的不对称可以通过检查流量计M3的对称声路的响应系数值检测出来。这些声路响应系数值能够量化不对称的观测值。
流量计3的测量误差与用探头代替流量计M3的测算误差十分吻合,所有的误差均小于0.5%。而对于单路式超声流量计,无整流器时的计算误差为2%-4%,有整流器时则可低至o.2%。
|